

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2017

Industrial IT and Automation

Environmental Public Health Information
Management System

Artem Chynchenko

www.usn.no

The University College of Southeast Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2017

Title: Environmental Public Health Information Management System

Number of pages: 50

Keywords: ASP.Net Core, SQL, MSSQL, HTML, CSS, JavaScript, MVC

Student: Artem Chynchenko

Supervisor: Hans-Petter Halvorsen

External partner: Tel-Tek, Porsgrunn municipality/Porsgrunn Kommune,

Telemark Hospital-Department of Occupational

Medicine/Sykehuset Telemark

Availability: Confidential

Approved for archiving:

(supervisor signature)

(Hans-Petter Halvorsen)

Summary:

The goal of the project is a web application that gives public access to the air quality and

environmental measurements from the database.

ASP.Net Core had been selected as a primary programming language to create web application.

The assist technologies are MSSQL, HTML, CSS, Telerik Kendo UI and Bootstrap. Visual Studio

2017 was used as programming environment for ASP.Net Core. SQL Server 2014 Management

Studio and erwin Data Modeler r9.7 used to work with SQL.

Home, statistic pages to retrieve and import page to seed measurements was implemented. Import

use Excel file as data source. Authentication and authorization were developed for web application

security. Relevant Login and register page created.

 Preface

3

Preface
Despite the experience in programming using C# language, the project was challenging. A

new approach and paradigm of programming the web application development required more

attention and knowledge enhancement. Instead of using inheritance of the classes “is a”

relationship, dependency injection principle “has a” relationship. Razor engine technology

with Razor syntax and TagHelpers are powerful features. Model binding for mapping data

and processing the HTTP requests. Only with listed feathers development would be possible.

The main objectives and task description could be found in Appendix A.

To understand the report the reader should be familiar with C# 6.0 which is ASP.NET Core

uses. But the knowledge of the C# 5.0 should be enough. Knowledge of SQL Server 2008+ is

beneficial. LINQ is used for querying the Database. Basic knowledge of LINQ is required.

Also, recommended basic knowledge of the HTML5, CSS and JavaScript. Knowledge of the

Bootstrap and jQuery libraries.

The reader should be familiar with Visual Studio 2017 interface, as well as installing NuGet

and Bower packages. Knowledge of the Entity Framework and Identity Entity Framework is a

plus.

The reader should understand MVC and Repository patterns, along with understanding OOP

principals.

I want to express my gratitude to the external partners for such un interesting project and to

supervisor Hans-Petter Halvorsen for the suggestion to use ASP.Net Core. Alexander Zhang

Gjerseth and Lucille Ang and all people who had helped them for good the report and database

this master project is based on.

The project folder along with database creation scripts, required seed scripts and import data

are coming as an attached .zip file.

The final version of the project was hosted in the Microsoft Azure service at http://ephms-

app.azurewebsites.net as well as the database.

Porsgrunn, 15. May 2017

Artem Chynchenko

http://ephms-app.azurewebsites.net/
http://ephms-app.azurewebsites.net/

 Nomenclature

4

Nomenclature
.Net – the list of computer programming languages that are used to produce

libraries known as CLI languages (1)

ASP – Active Server Pages

CLI – Common Intermediate Language

CSS – Cascading Style Sheets

DB – Data Base

HTML – Hypertext Markup Language

IIS – Internet Information Services

JS – JavaScript

JSON – JavaScript Object Notation

MSSQL – RDBM developed by Microsoft

MVC – Model–view–controller

noSQL – "non-relational" or "not only SQL"

RDB – Relational Data Base

RDBMS – relational database management system

SQL – Structured Query Language

VDS – Virtual Dedicated Server

VPS – Virtual Private Server

XML – Extensible Markup Language

FURPS+ – Functionality-Usability-Reliability-Performance-Supportability-Pluss

various attributes (2)

FDUCD – Fully dressed Use case document

CRUD – Create/read/update/delete

 Nomenclature

5

RI Action – Referential Integrity Action

LINQ – Language Integrated Query

 List of Figures

6

List of Figures
Figure 2-1: Simple HTML page.

Figure 2-2: HTML page styled with CSS.

Figure 2-3: HTML page before button “Try it!” is pressed.

Figure 2-4: HTML page after button “Try it!” is pressed.

Figure 2-5: Link tag styled with Bootstrap.

Figure 2-6: Nav tag styled with Bootstrap.

Figure 2-7: Telerik DatePicker element.

Figure 2-8: ASP.Net overview.

Figure 2-9: Middleware communication in ASP.Net Core.

Figure 2-10: ASP.Net Core “Hello World!” run result.

Figure 2-11: “Hello world!” page source code.

Figure 2-12: Model view controller overview.

Figure 4-1: Global representation of the application.

Figure 4-2: “USER” table.

Figure 4-3: “PASSWORD” table.

Figure 4-4: “USERROLE” table.

Figure 4-5: “LOGINATTEMPT” table.

Figure 4-6: “MEASUREMENT” table.

Figure 4-7: “PROPERTY” table.

Figure 4-8: Entity frameworktables.

Figure 4-9: “__EFMigrationsHistory” table.

Figure 4-10: Main structure tables.

Figure 4-11: File and folder structure (without Views folder).

Figure 4-12: View folder structure.

Figure 4-13: Home page.

Figure 4-14: Import page.

Figure 4-15:Import from Excel.

Figure 4-16: Login page.

Figure 4-17: Register page.

Figure 4-18: Statistic page.

 List of Tables

7

List of Tables
Table 3-1: Requirements overview.

Table 3-2: Overview of different hosting environment.

Table 3-3: Overview of the servers.

 Contents

8

Contents

1 .. Introduction ... 10

1.1 Report structure .. 10

2 .. Theory .. 11

2.1 SQL ... 11
2.1.1 Tables ... 11

2.2 HTML .. 11
2.3 CSS ... 12
2.4 JavaScript .. 12
2.5 Bootstrap ... 13
2.6 Telerik Kendo UI .. 13
2.7 ASP.NET Core 1.1 ... 14

2.7.1 What is ASP.NET Core 1.1? ... 14
2.7.2 Middleware ... 15
2.7.3 Hello World! ... 16
2.7.4 MVC .. 17
2.7.5 Razor .. 18
2.7.6 TagHelpers ... 19

3 .. System description ... 20

3.1 Customer and technical requirements ... 20
3.2 Hosting and deployment .. 20

3.2.1 Hardware configuration .. 20
3.2.2 Server configuration/software ... 21

3.3 Analysis ... 22
3.3.1 FURPS+ .. 22

4 .. Results ... 24

4.1 Database .. 24
4.1.1 Naming convention ... 24
4.1.2 Redesign and update of the database .. 24
4.1.3 Database identity migration ... 27
4.1.4 Result ... 28

4.2 Web application .. 29
4.2.1 Create Web application .. 29
4.2.2 Configuring NuGet and Bower packages ... 30
4.2.3 MVC structure .. 31
4.2.4 Entity Framework core ... 32
4.2.5 Core Identity .. 32
4.2.6 Repository pattern .. 33

4.3 Views .. 34
4.3.1 Home page ... 35
4.3.2 Import ... 35
4.3.3 Import from Excel .. 35
4.3.4 Statistic .. 36
4.3.5 Login/Register ... 36

5 .. Discussion ... 38

6 .. Summary .. 39

 Contents

9

7 .. Future work ... 40

7.1 Business logic ... 40
7.2 RESTfull API .. 40
7.3 AJAX... 40
7.4 Globalization and localization ... 40

Appendix A .. 43

Appendix B .. 45

Appendix C .. 48

Appendix D .. 49

 1 Introduction

10

1 Introduction
One of challenges for modern world is a control over air pollution. The air quality affects not

only people health, but the planet itself with global warming. In order take over the control this

problem the United Nations Framework Convention on Climate Change agreement was signed

between countries, including Norway. Its mission in regulation of the greenhouse gas produced

by human activity.

To fulfil the requirements over air pollution from the agreement the external censors Tel-Tek,

Porsgrunn municipality/Porsgrunn Kommune, Telemark Hospital-Department of Occupational

Medicine/Sykehuset Telemark issued the project for creating the Environmental Public Health

Information Management System. The system must collect data about air quality from local

stations and make them publicly available.

There are several similar systems that already exist, but most of the them includes only area

general information. Environmental Public Health Information Management System should be

designed specifically for Porsgrunn Kommune and local industry, but should be flexible

enough to add another municipalities.

The goal of this thesis is to continue system development based on the previous projects

completed at University Collage of South-East Norway. In the previous work, the focus was

on the database design and data import. Simple PHP representation was also created. The list

of the objectives can be found in Appendix A. The task involved:

 Overview of available tools and methods of web application development;

 Choice of architecture for the database: SQL, noSQL;

 Development of secure infrastructure for user registration/login;

 Web application logic and infrastructure development;

 Make import functions from excel files.

 Data presentation;

 Hosting of the data;

The tasks that were for the future work:

 RESTfull API development;

 Exporting of the data;

1.1 Report structure

This report consists 7 chapters. Chapter 2 very briefly describes the theory of the methods

that was used during development of the web application. Chapter 3 will give the

understanding of the hosting environments and capabilities. Chapter 4 and 5 discuss the

results that was achieved and recommendations. Chapter 6 will give a short summary about

achieved result. Final chapter 7 will give the overview of the future work.

 2 Theory

11

2 Theory
This chapter give an overview of the theory used to during application development.

2.1 SQL

This paragraph will show SQL basics

2.1.1 Tables

The code below will generate a table:

CREATE TABLE TAB

(

 Col1 int NOT NULL IDENTITY (1,1) ,

 Col2 varchar() NOT NULL ,

 PRIMARY KEY CLUSTERED (Col1 ASC)

)

go

It creates a table with int and varchar column, both are not null. The Col1 has identity that

starts from 1, each new value increasing by 1. Col1 used as a primary key is another table.

2.2 HTML

HTML is an industry standard to markup the Web page. It stands for Hyper Text Markup

Language. HTML elements are like building blocks represented by tags. <html>, <head> and

<body> are required to be in the .html document.(3)

Simple HTML document will look as follows:
<!DOCTYPE html>

<html>

<head>

<title>EPHMS</title>

</head>

<body>

<h1>Hello Word!</h1>

<p> This is Environmental Public Health Information Management System. </p>

</body>

</html>

If you will open it with the browser you will see the result as on the Figure 2-1

Figure 2-1: Simple HTML page.

 2 Theory

12

2.3 CSS

CSS (Cascading Style Sheets) – helps to style the HTML styles. They declare how the page

will look like. After adding next styles to our document:

body {

 background-color: lightblue;

}

h1 {

 color: green;

 text-transform: uppercase;

 font-style: italic;

}

p {

 text-decoration: underline;

}

we will get Figure 2-2.

Figure 2-2: HTML page styled with CSS.

2.4 JavaScript

JavaScript is a programming language which helps to make client side pages interactive. This

JavaScript code is changing the font size in any tag that has an id that equals to “demo” from

16px to 32px when the function myFunction() is called. In this case size changes when

user is clicking on the button, see Figure 2-3 and Figure 2-4.

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<button type="button" onclick="myFunction()">Try it!</button>

<p id="demo">JavaScript game changer.</p>

<script>

var x = false;

function myFunction() {

 if (x) {

 document.getElementById('demo').style.fontSize='16px';

 x=false;

 } else {

 document.getElementById('demo').style.fontSize='32px';

 x=true;

 }

}

</script>

</body>

</html>

 2 Theory

13

Figure 2-3: HTML page before button “Try it!” is pressed.

Figure 2-4: HTML page after button “Try it!” is pressed.

2.5 Bootstrap

Bootstrap is the CSS and JavaScript framework which make easier to create responsive web

pages.(4)

The framework consists of components and options for page layout. It has options for

different screen resolutions like: Extra small <576px, Small ≥576px, Medium ≥768px, Large

≥992px, Extra-large ≥1200px. Html components comes with prebuild styles. The most useful

among them are forms, buttons, links(Figure 2-5), navbars(Figure 2-6), input groups etc.(5)

Figure 2-5: Link tag styled with Bootstrap.

Figure 2-6: Nav tag styled with Bootstrap.

2.6 Telerik Kendo UI

Telerik has UI’s for different environments. Kendo UI for jQuery was used in this project.

As documentation states by imbedding next code to the project, it will generate a DatePicker

element:

 2 Theory

14

“<!DOCTYPE html>

<html>

<head>

 <title></title>

 <link rel="stylesheet" href="styles/kendo.common.min.css" />

 <link rel="stylesheet" href="styles/kendo.default.min.css" />

 <link rel="stylesheet" href="styles/kendo.default.mobile.min.css" />

 <script src="js/jquery.min.js"></script>

 <script src="js/kendo.all.min.js"></script>

</head>

<body>

 <div id="example">

 <div class="demo-section k-content">

 <h4>Show e-mails from:</h4>

 <input id="datepicker" value="10/10/2011" title="datepicker" style="width:

100%" />

 </div>

 <script>

 $(document).ready(function() {

 // create DatePicker from input HTML element

 $("#datepicker").kendoDatePicker();

 });

 </script>

 </div>

</body>

</html>”

Figure 2-7: Telerik DatePicker element.

2.7 ASP.NET Core 1.1

This paragraph is a brief overview of the ASP.Net Core

2.7.1 What is ASP.NET Core 1.1?

ASP.NET Core 1.0 is a logical continuation of ASP.NET 4.6. Next framework should get the

name of ASP.NET 5. But because of the big update, absolutely new approach and libraries it

is called ASP.NET Core 1.0 (6) Figure 2-8.

 2 Theory

15

Figure 2-8: ASP.Net overview.

ASP.NET Core relatively new, written from scratch, open-source programing language

developed by Microsoft. It is intended for building modern and cloud based services and

applications like web apps, IoT, etc. It is cross-platform. Mac OS, Linux and Windows could

be used for developing and hosting such apps and services (7).

The flexibility, consistency, high performance and lightweight of the framework archived by

its modularity. Those modules could be server sided like: ASP.NET Core MVC, Entity

Framework, Identity Entity Framework, Razor syntax, etc. As well as, client sided like:

Bootstrap, jQuery, AngularJS, Node.js. NuGet and Bower packages serve this purpose.

2.7.2 Middleware

Middleware is a software with its logic to process the request of the user and provide the

response if it is required by the request data. This software blocks create “pipeline” shown on

the Figure 2-9. Each middleware decides whether to add logic or to pass it further to the next

one. The request first goes forward through and then returning though each middleware. The

logic could be added on any step.(8)

 2 Theory

16

Figure 2-9: Middleware communication in ASP.Net Core.

2.7.3 Hello World!

The ASP.NET Core code below is the “main” class of the web app project. After compiling

the code the program will represent the server side to run on server.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Logging;

namespace WebApplication1

{

 public class Startup

 {

 // This method gets called by the runtime. Use this method to add services to the

container.

 public void ConfigureServices(IServiceCollection services)

 {

 }

 // This method gets called by the runtime. Use this method to configure the HTTP

request pipeline.

 public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory

loggerFactory)

 {

 loggerFactory.AddConsole();

 if (env.IsDevelopment())

 2 Theory

17

 {

 app.UseDeveloperExceptionPage();

 }

 app.Run(async (context) =>

 {

 await context.Response.WriteAsync("Hello World!");

 });

 }

 }

}

This file is named Startup.cs. Every using statement is loading required library to compile the

app. It is required, by convention, that the Startup.cs file should contain Startup class inside

the app namespace. Startup class is used to configure services inside

ConfigureServices() method used to specify additional features and options if some required

for the Configure() method. ConfigureServices() method can be omitted . It is required to call it

before the Configure() method if ConfigureServices() is used.

Configure method represents how the application will react to the HTTP request. It constructs

such a called “pipeline” of the middleware which will process user request. (9)

The Configure() method “pipeline” is shown on the picture. After Configure() method receives

the request the middleware starts to process it. (8)

The middleware inside the Configure() method can generate the HTML code. In the code

example the “Hello World!” text does not contain any HTML formatting. After compiling

and starting the application a result of the app.Run() middleware will be shown on the Figure

2-10.

Figure 2-10: ASP.Net Core “Hello World!” run result.

The page shows just “Hello World!”, but page source code shows minimal html formatting,

see Figure 2-11.

Figure 2-11: “Hello world!” page source code.

2.7.4 MVC

MVC stands for Model-View-Controller Figure 2-12. This pattern was developed to maintain

separation of concerns. It is divides the application into three pieces. This pattern leads to

more clean and understandable code, makes scale of the applications much easier. Update,

test and debug are much easier with this pattern. As it is stated in the documentation you can

 2 Theory

18

keep the business logic without changes if it is meet the requirements, but change the client

design more frequently. (10)

Figure 2-12: Model view controller overview.

Model usually represents all settings and data inside the application. The application uses this

business logic as a data storage typically represented by database, XML or JSON files. For

the views like website pages it is recommended to use View Model types. They only hold the

information that will be described on the page. (10)

View is showing the content to the use. View uses Razor view engine. Razor view engine

processes the Razor markup syntax, .Net code, TagHelpers, etc. to generate the HTML page.

Views are ONLY displaying and requesting the information.(10)

Controller is maintaining the interaction between view and model. He decides what data from

Model will be shown and which view will display the data.(10)

To use the MVC services must be registered. This is done by adding next line of code to the

ConfigureServices() method:

services.AddMvc();

And the middleware must be set up in the Configure() method with the code:

app.UseMvcWithDefaultRoute();

2.7.5 Razor

Razor is a markup syntax design specifically to run-in server base code into regular HTML

page. If the user want to see current date and time each time the page is reloaded the

programmer can use Razor syntax inside the View to execute the C# code (11), as follows:

<p>@DateTime.Now</p>

<p>@DateTime.IsLeapYear(2016)</p>

 2 Theory

19

2.7.6 TagHelpers

TagHelpers is a special back-end code helper for the Razor engine. They help the views look

more like HTML syntax. (12)

Instead of using:

@using (Html. Begin Form("Register”, “Account”, FormMethod.Post, new { @class form-horizontal

}))

{

 @Html.AntiForgeryToken()

…

}

The code above is (Razor markup syntax) creates a Form. After the Razor engine will process

the it the page will have regular HTML form. That syntax is new for the front-end

developers. That is why they can use TagHelpers instead. The code below is identical, but it

is more understandable for the programmer(12):

<form asp-controller="Account" asp-action="Register" asp-antiforgery="true" method="post"

class="form-horizontal" >

…

</form>

This code looks more like regular HTML. asp-controller, asp-action and asp-antiforgery are

the TagHelpers.(12)

 3 System description

20

3 System description

3.1 Customer and technical requirements

The customer and technical requirement listed in the Table 3-1.

Table 3-1: Requirements overview.

Customer requirement: Technical requirement:

1) Data available online via website;

2) Data should be to open to the public;

3) Statistics page should present data with

graphs, tables and/or diagrams;

4) Report generation;

5) Flexible import/export should be

implemented the excel sheets or .csv

files;

6) System should be safe, secure and

reliable;

7) System should store data about air

pollution and quality, emissions from

industry, cars gases emissions which are

collected with different systems

(weather stations, etc.);

8) REST API should be implemented.

 Scrum method used for development

with 2 period;

 Front-end should use HTML + CSS +

JavaScript + jQuery;

 JS, CSS libraries used in the project:

o Bootstrap;

o jQuery;

o Flowtype.js

 Back-end with ASP.Net Core as

executable on the Web Server;

 ASP.Net Core MVC used for low

coupling of the component;

 Hosting and deployment: Azure, USN

Server or Dedicated hosting server

(customer choice);

 Import/export of the data;

 Data stored in the SQL DB;

 MS SQL Server used for the database;

 Safety system using User/User Roles

functionality.

3.2 Hosting and deployment

3.2.1 Hardware configuration

In this paragraph will be discussed what hardware the customer can use for hosting the web

application.

There are three options available to host an application, see Table 3-2:

 3 System description

21

 Own server;

 Dedicated server / VPS, VDS;

 Microsoft Azure.

Own server / Dedicated server is a kind of hosting in which the whole client is provided as a

separate physical machine (as opposed to virtual hosting).

VDS/VPS is a server which shares resources of a real physical server with another VDS/VPS.

The user can receive maximum rights root for Unix and Administrator for Windows. VDS /

VPS emulate the work of a real server. The user can install custom OS and software that is

required.

Microsoft Azure has specialized services like “WebApp” and “SQL Database” or “Web App

+ SQL” for running ASP.NET Core app.

Table 3-2: Overview of different hosting environment.

 Own server Dedicated server VPS, VDS Microsoft Azure

Full control

(OS, software,

rights)

+ + + -

Limitations

(number of

websites, DB,

domains etc.)

- - - -

Independence

(resources, etc.)
+ + + +

Necessity of

administration
+ + + -

Price

Server price +

resources for

maintenance price

Monthly or yearly

fees

Monthly or

yearly fees

Monthly or

yearly fees/

Pay as you go

3.2.2 Server configuration/software

ASP.NET Core application are cross-platform, it can be installed to any operating system as

Windows, MacOS or any Unix system(Linux).(13)

Documentations only have recommendations which server to use see Table 3-3

Table 3-3: Overview of the servers.

Windows: IIS, Windows Service

 3 System description

22

MacOS: Apache HTTP Server*,

nGinx*
Unix:

* – possible to use with Windows but recommended.

3.3 Analysis

In this chapter, the analysis of the project will be covered.

3.3.1 FURPS+

Functionality – describes the use cases and functions of the application(2):

 Application should be able to perform CRUD data requests in the Models for

instances of:

 Country;

 Area;

 City;

 Emission source;

 Measurement;

 Measurement groups;

 Measurement type;

 Measurement unit;

 Measurement unit groups;

 Measurement station;

within the Controllers independently from a source: user request (hand input, excel sheet,

WebAPI);

 Generate the Views;

 Application should handle register/login/logout requests;

 Use HTTP protocol to interact with application;

Usability – describes the interaction of the user with the application:

 Client side should use HTML + CSS + JavaScript + jQuery;

 Change filter setting for the measurement request;

 Data displays with raw value in table/chart;

Reliability:

 System should work 24/7.

 Tier Level III-IV.

Performance – describes what amount of the resources system will consume:

 Database storage minimum 20 gigabytes;

 3 System description

23

 Ram capacity minimum 256mb;

 Application storage minimum 1gigabyte;

 CPU minimum performance dual core 2.7GHz.

Supportability:

 OS: Windows, Usix, MacOS;



+:

 Application languages: English, Norwegian;

 4 Results

24

4 Results
This chapter is will show the process of creation of the application. The application

conditionally divided into blocks that you can observe on Figure 4-1.

Figure 4-1: Global representation of the application.

4.1 Database

The database from paragraph 2.1 has been updated and modified not only using SQL

modeling tool Erwin described in paragraph 2.1.

4.1.1 Naming convention

The renaming of the tables in the database was performed according to the naming

conventions rulers:

 Tables name should use uppercase.

 Column name should include table name + column name without spaces, capitalizing

each word.

4.1.2 Redesign and update of the database

“USER” table was redesigned to increase the security of the system. The password column

has been separated and redesigned to the new table “PASSWORD” with the same purpose.

“USERROLE” and “LOGINGATTEMPTS” has been added to manage login, logout and

registration of the user. Figure 4-2

The “USER” table has been populated with:

− UserFirstName,

− UserLastName,

− UserLogin,

− UserBeginDate,

− UserEndDate,

− UserConfermed,

− UserPhoneNumber,

 4 Results

25

− UserValid,

− UserRoleId,

− PasswordId,

− UserImage columns.

Figure 4-2: “USER” table.

Separate table should be used to save the passwords hashes and salt of the users. Ideally

hashes and salts should be located on a separate database server. Both servers with hash and

salt should be cut-off from the world (and from each other) and only accessible from the

server that runs your Web application.(14)

That is why “PASSWORD” (Figure 4-3) table was designed as a separate table with next

column properties added:

 PasswordSalt – random salt for each user;

 PasswordHash – hashed user password with MD5, SHA256or SHA512 algorithm using

PasswordSalt column property;(15)

 PasswordQuestion – security question;

 PasswordAnswer – security answer;

 PasswordActive – password status variable;

 PasswordBeginDate – date and time when password created;

 PasswordEndDate – date and time when password changed, forgot, etc.

Figure 4-3: “PASSWORD” table.

 “USERROLE” (Figure 4-4) table determine the access level or permissions of a person

authorized or invited by an Administrator, to use the website. (16)

For example:

− Administrator nothing is off limits (service engineers);

− Editor has access to all posts, import/export page;

− Author can write, edit, and publish their posts (for example some reports, news or

studies.

 4 Results

26

“USERROLE” (Figure 4-4) table structure:

− Overruled – value to identify the user role;

− UserRoleName – the name of the role;

− UserRoleDescription – variable that saves the description for UserRoleName;

− UserRoleActive – shows if the UserRole is active.

Figure 4-4: “USERROLE” table.

“LOGINATTEMPT” table (Figure 4-5) indicates when, from what IP and browser, what

password and what user name was used to login and was the attempt successful.

Figure 4-5: “LOGINATTEMPT” table.

The “Timespamp” column in the “MEASUREMENT” table was updated to two columns.

First is MeasurementTimestamp of the actual measurement time and MeasurementAdded to

watch for the time of the data import see Figure 4-6. The LimitValue column was moved to

the separate table “PROPERTY” (Figure 4-7) to see what exactly limit is this HIGH or LOW.

This table can not only identify the range but also the sensor crash.

 “ANNUALDATA” table has been dropped.

Figure 4-6: “MEASUREMENT” table.

Figure 4-7: “PROPERTY” table.

 4 Results

27

The primary key columns in all the tables except “MEASUREMENT” where set to the value

of int with the Identity(1,1), which means that the value for this columns will automatically

generated starting from number 1 and will be increasing by 1 with each new created row.

The MeasurementId column in “MEASUREMENT” table is nvarchar(36). SQL server uses

int as Int32 which value range lies from -2,147,483,648 to 2,147,483,647. When the system

will have 2,147,483,647 measurements, next value will start from -2,147,483,648 and it get to

0 the database data will be full and “crashed”. The MeasurementId column should be a

unique generated value that will never repeat itself. Guid.NewGuid().ToString() generates a

unique value from:

− The MAC address of the Server that runs the application;

− Timestamp at the request processing;

− Extra "emergency uniquifier bits";

− Identifier for the algorithm.

The value consists from 32 letters and/or number separated by 4 hyphens that gives the

overall length of 36 characters. The generation of the MeasurementId identificatory using

GUID method should be handled by the application logic.(17-19)

RI action 12 relationship between tables have been modified to maintain the identity of the

database. The Delete Rule and Update Rule for Parent or Child has been set to “Cascade”.

That means when for example the user deletes the entry from “MEASUREMENTTYPE”

table the data from “MEASUREMENT” table should be deleted and handled by the database.

All the alarms and warning on the consequences should be handled by the application logic.

4.1.3 Database identity migration

When the database was for started implementing the application, the first thing in the list was

to implement User login/logout/register logic. After a question research about password

hashing I found next from Defuse Security at:

“DO NOT WRITE YOUR OWN CRYPTO! The problem of storing passwords has already

been solved.”

(Defuse Security (September 26, 2016) Salted Password Hashing - Doing it Right. (15))

That gave me the idea that I should not implement my own security either. It turns out that

ASP.Net Core has built in security feathers which implementation will be shown in the

paragraph 4.2.5. The bottom line of the Core Identity Framework is that it adds all the

necessary tables to roll the security. The operation includes migration and extensions of the

database with next tables (Figure 4-8):

− AspNetUser;

− AspNetUserClaims;

− AspNetRoles;

− AspNetRoleClaims;

− AspNetUserRoles;

− AspNetUserLogins;

 4 Results

28

Figure 4-8: Entity frameworktables.

That means that all our tables for web application security can be dropped.

In addition, the table “__EFMigrationsHistory” (Figure 4-9) has been created to save and

track the history of other migrations.

Figure 4-9: “__EFMigrationsHistory” table.

The migration will happen even if during we are going to change the development database

to production version. There is no need to manually migrate or create Entity framework

tables. These lines of code from the project should perform migration even if tables were

deleted:

if (Database.GetPendingMigrations().Any())

 {

 Database.Migrate();

 }

4.1.4 Result

In the result database will consist from tables shown on the Figure 4-8, Figure 4-9 and Figure

4-10.

Seed data that was used for Entity framework tables are in Appendix C.

Data used to seed the first entities of the database are in the Appendix D. First version of the

script based on the Master project report (20).

 4 Results

29

Figure 4-10: Main structure tables.

You can find the generation script in the Appendix B.

All these scripts were applied to the Azure database. During the web application creation, the

database was hosted in the cloud.

4.2 Web application

This chapter will walk the user through the codding part of the project.

4.2.1 Create Web application

First, the project was created in Visual Studio 2017 using the Telerik UI ASP.NET Core. This

is a separate product for the Visual Studio. This solution adds advanced UI toolset for your

project. This free trial for 30days can be downloaded from http://www.telerik.com/aspnet-

core-ui.

This project template looks almost the same as described in paragraph 2.7.3. It is only adds

“Telerik.UI.for.AspNet.Core.Trial” NuGet package to the project dependencies, sets up the

Kendo UI middleware and register Kendo servises in the Startup.cs Configure() and

ConfigureServices() methods.

Telerik ASP.NET Core project used the ASP.NET Core 1.0. The new version of ASP.NET

Core 1.1 is already available. The update to the ASP.NET Core 1.1 has been performed by

changing next lines in the EPHMS.csproj file:

<PropertyGroup>

 <TargetFramework>netcoreapp1.1</TargetFramework>

 <PreserveCompilationContext>true</PreserveCompilationContext>

 <AssemblyName>EPHMS</AssemblyName>

 <OutputType>Exe</OutputType>

http://www.telerik.com/aspnet-core-ui
http://www.telerik.com/aspnet-core-ui

 4 Results

30

 <PackageTargetFallback Condition=" '$(TargetFramework)' == 'netcoreapp1.1'

">$(PackageTargetFallback);dotnet5.6;portable-net45+win8</PackageTargetFallback>

 </PropertyGroup>

And executing next commands in the Package console manager(21):

dotnet restore

dotnet build

4.2.2 Configuring NuGet and Bower packages

In this paragraph, all required NuGet and Bower packages will be listed. Some packaged

have required dependencies that install automatically with the main package, so they will not

be listed. You can find dependencies list in the NuGet package manager of at

https://www.nuget.org .

It is not necessary to add all the packages at once. They can be installed as needed. This

shows how flexible and configurable the ASP.NET Core was designed.

NuGet packages required to work with SQL Server, to able to perform CRUD requests and

design and publish table to the database if required(22):

 Microsoft.EntityFrameworkCore.SqlServer

 Microsoft.EntityFrameworkCore.Tools

 Microsoft.EntityFrameworkCore.SqlServer.Design

NuGet packages required to work with MVC(23):

 Microsoft.AspNetCore.Mvc

NuGet packages required to work with Web API(23):

 Microsoft.EntityFrameworkCore.InMemory

 Microsoft.AspNetCore.Authentication.jwtBearer

NuGet packages required to work with JSON, XML, connection string and other options(24):

 Microsoft.Extensions.Options.ConfigurationExtensions

 Microsoft.AspNetCore.Mvc.Formatters.Json

 Microsoft.AspNetCore.Mvc.Formatters.Xml

NuGet packages required to work with Razor engine TagHelpers(12):

 Microsoft.AspNetCore.Razor.Tools

NuGet packages required to work with CSS, JavaScript and other static file in the wwwroot

folder(25):

 Microsoft.AspNetCore.StaticFiles

NuGet packages required to work with Identity Core framework(26):

 Microsoft.AspNetCore.Identity.EntityFrameworkCore

NuGet packages required to work with Localization of the web application(27):

 Localization.AspNetCore.TagHelpers

https://www.nuget.org/

 4 Results

31

Bower packages required to work with Bootstrap(28):

 "bootstrap": "v4.0.0-alpha.6",

 "tether": "1.4.0",

 "jquery": "3.2.1"

Bower packages to enable responsive text and charts:

 "Flowtype.js": "1.1.0",

 "chartist": "v0.11.0"

4.2.3 MVC structure

In this chapter, the MVC framework will be added to the project and the folder structure will

be created.

The folder stricture for the MVC files will be created now. This will make the project look

clean with understandable structure.

MCV stand for Model, View and Controller, so three folders must be created: Models, Views

and Controllers. In Addition to them the Entities folder created. This folder will also keep

models that will be “scaffolded” from the database, see paragraph 0.

Also, Configuration folder created. It will contain Seed method that must populate database

with required information.

Controllers according to the requirement must be created. Controller name must consist from

“Controller name” plus “Controller” word.

Every controller has action/actions inside. Any action can return a view, redirect to another

action, etc. For those actions that are returning the view, those views must be created.

The overall project structure shown on the Figure 4-11 and Figure 4-12.

 4 Results

32

Figure 4-11: File and folder structure (without Views folder).

4.2.4 Entity Framework core

To use the table as classes in ASP.Net Core special command – “scaffolded” was used. It

takes connection string as a parameter, file name of the tables context and output folder. User

can also specify tables he wants to scaffolded.

Scaffold-DbContext "Data Source=ephms-db-server.database.windows.net;Initial Catalog=EPHMS-

db;User ID=adminArtem;Password=p0int->tjsMk8%" Microsoft.EntityFrameworkCore.SqlServer -

OutputDir Entities –context EPHMSContext -tables (“AREA” , “CITY”, “COUNTRY” ,

“EMISSIONSOURCE“ , “HEALTHEFFECT“ , “HEALTHEFFECTGROUP“ , “MEASUREMENT“ , “MEASUREMENTGROUP“ ,

“MEASUREMENTSTATION“ , “MEASUREMENTTYPE“ , “MEASUREMENTUNIT“ , “MEASUREMENTUNITGROUP“ ,

“PROPERTY“)

4.2.5 Core Identity

To create the secure registration and login the Identity Entity framework was used. To use it

we need to create some class that inherits from Identity user, like this:

 public class ApplicationUser : IdentityUser

{

}

Then create the context for the Identity as follows:

namespace EPHMS.Models

{

 public class IdentityUserToDbContext : IdentityDbContext<ApplicationUser>

 4 Results

33

 {

 public IdentityUserToDbContext(DbContextOptions<IdentityUserToDbContext> options) :

base(options)

 {

 if (Database.GetPendingMigrations().Any())

 {

 Database.Migrate();

 }

 }

 }

}

In the startup class services must be added and middleware registered with next lines:

services.AddDbContext<IdentityUserToDbContext>(options => options.UseSqlServer(@"Data

Source=tcp:ephms-db-server.database.windows.net,1433;Initial Catalog=EPHMS-db;User

ID=adminArtem@ephms-db-server;Password=PASSWORD"));

And

app.UseIdentity();

The seed methods can then be called before closing curly bracket of the Configuration

method.

new UserRoleSeed(app.ApplicationServices.GetService<RoleManager<IdentityRole>>()).Seed();

new UserSeed(app.ApplicationServices.GetService<UserManager<ApplicationUser>>()).Seed();

4.2.6 Repository pattern

To maintain the single responsibility principle the repositories was created, see Figure 4-11.

Before using the repository pattern controllers where highly dependent on the data base

context. If the customer will decide not to use specific tables from the database and use web

API instead, if the API can fulfil the repository interface there is need to change the controller

logic. Separate methods were used to read required data from the database. Then the

Interfaces were extracted from the methods.

Example of the CityRepository:

namespace EPHMS.Repositories

{

 public class CityRepository : ICityRepository

 {

 private EPHMSContext cityDb = new EPHMSContext();

 public City CreateCity(City newCity)

 {

 cityDb.City.Add(newCity);

 cityDb.SaveChanges();

 return newCity;

 }

 public City GetCity(int cityId)

 {

 return cityDb.City.FirstOrDefault(c => c.CityId == cityId);

 }

 public List<City> GetAllCities()

 {

 return cityDb.City.ToList();

 }

 public City UpdateCity(City updatedCity)

 {

 var originalCity = cityDb.City.FirstOrDefault(c => c.CityId ==

updatedCity.CityId);

 originalCity.CityName = updatedCity.CityName;

 originalCity.AreaId = updatedCity.AreaId;

 originalCity.CountryId = updatedCity.CountryId;

 cityDb.SaveChanges();

 return originalCity;

 4 Results

34

 }

 public bool DeleteCity(int cityId)

 {

 City deleteCity = cityDb.City.FirstOrDefault(c => c.CityId == cityId);

 if (deleteCity != null)

 {

 cityDb.City.Remove(deleteCity);

 cityDb.SaveChanges();

 }

 return (cityDb.City.FirstOrDefault(c => c.CityId == cityId) == null);

 }

 }

}

And ICityRepository interface:

namespace EPHMS.Repositories

{

 public interface ICityRepository

 {

 City CreateCity(City newCity);

 bool DeleteCity(int cityId);

 List<City> GetAllCities();

 City GetCity(int cityId);

 City UpdateCity(City updatedCity);

 }

}

4.3 Views

Front-end representation will be covered in this paragraph.

The view in the ASP.Net Core are not just static files. They have complex structure Figure

4-12: View folder structure. that gives a lot of flexibility and allow to reuse code for example

navigation bar – _Menu.chhtlm from shared folded used in all pages. HTML TagHelper -

@Html.Partial() renders it inside the _Layout file before redirecting the request to the user.

As a result this structure generates required HTML pages according to the HTTP request.

Figure 4-12: View folder structure.

 4 Results

35

4.3.1 Home page

The running home page will look as described in Figure 4-13

Figure 4-13: Home page.

4.3.2 Import

The running Import page will look as described in Figure 4-14

Figure 4-14: Import page.

4.3.3 Import from Excel

The running Statistic page will look as described in Figure 4-15

 4 Results

36

Figure 4-15:Import from Excel.

4.3.4 Statistic

The running Statistic page will look as described in Figure 4-18

4.3.5 Login/Register

The running login and registration pages will look as described in Figure 4-16 and Figure

4-17

Figure 4-16: Login page.

 4 Results

37

Figure 4-17: Register page.

Figure 4-18: Statistic page.

 5 Discussion

38

5 Discussion
ASP.Net Core is new, written from scratch as a logical continuation of the ASP.Net 4.6

framework. It can use C# as primary language for programing. All that gives it very powerful

feathers. For example, it was decided to use LINQ, instead of creating View, Store

procedures, etc. in the database. Because with the help of Entity framework we can have our

tables as classes directly inside application. Another plus of the ASP.Net core is that it is

module based framework. It makes the application very lightweight. But, since it is modular

setting up all the required project modules and libraries takes time. So, it is recommended to

use the project as template for future development. Another powerful feather of ASP.Net

Core called Razor engine was used for creating views. It allows to write C# code inside the

page.

Telerik Kendo UI, Bootstrap and other CSS and JavaScript libraries user for creating the

representation and views of the application. They help to create nice looking and dynamic

pages.

Visual Studio 2017, SQL Server 2014 Management Studio and erwin Data Modeler r9.7 was

used during development. Those tools suites very well for creating such application. The

HTML pages’ representation was created before using the ASP.Net Core and Visual Studio

2017. Open-source editor called Brackets was used. The advantages of this editor are that it

has quick access to the documentation, live preview and it works with HTML and JavaScript

(29).

Objectives of their implementation discussed in summary.

Future work discussed in the chapter 7.

 6 Summary

39

6 Summary
Among many available back-end languages PHP, ASP.Net 4.6, Python, Java, Ruby, Perl for

web development, light and open-source ASP.Net Core 1.1 was chosen. It was decided to use

SQL as a primary source of data since it suits best for stretchered data like measurements.

CSS and JavaScript libraries helped to speed up the development process. During web

development, next pages were created:

 Home;

 Login;

 Register;

 Statistics;

 Import;

 Import from excel.

Login and register pages use ASP.Net Core Security feathers from. Special seed functions

were developed to populate Entity framework tables in the database.

The functionality of statistics pages can show the data from different emission source,

measurement stations and types. Also, it followed by graphical representation and table of

measurements.

Import page shows last imported data and it is available only for users that login with the

“Admin” privilege. Import page also has a function of the hub for other

import/export/update/delete pages that will be implemented in future. The Import from excel

function is available from this page. Import from excel page has a for with required

parameters and file download form. The form has evaluation of broken data with the value of

-1 for the measurements.

The cascade properties were added to the database to maintain database identity. Repositories

created in the web application to maintain the single responsibility pattern. The Interfaces has

been extracted from repositories, so using of web APIs is not affecting the controller’s logic.

Dependency injection technic was used to archive loose coupling.

 7 Future work

40

7 Future work

7.1 Business logic

The main objective for the future work is increasing of the business logic in the application.

That will add more functionality and will make the application more flexible. Bigger

functionality will require more testing (manual and automatic) of the software, as well as

optimization acquirer more computational power with less resources.

7.2 RESTfull API

RESTfull API must be implemented for automatic data collection in addition to manual import

from excel. RESTfull services will help to receive data from sources not only at the same time.

7.3 AJAX

AJAX capabilities should be implemented. This help to make the website more dynamic and

intuitive, as well as will allow to reload data without reloading the page.

7.4 Globalization and localization

Second language implementation. The required libraries are already installed in the project.

 References

41

References
1. List of CLI languages [Internet]. 2017 [cited 18.04.2017]. Available from:

https://en.wikipedia.org/wiki/List_of_CLI_languages.

2. FURPS [Internet]. 2017 [cited 21.04.2017]. Available from:

https://en.wikipedia.org/wiki/FURPS.

3. HTML Introduction [Internet]. [cited 22.04.2017]. Available from:

https://www.w3schools.com/html/html_intro.asp

4. Getting started (Bootstrap) [Internet]. [cited 15.04.2017]. Available from: https://v4-

alpha.getbootstrap.com/getting-started/introduction/.

5. Components (Bootstrap) [Internet]. [cited 12.04.2017]. Available from: https://v4-

alpha.getbootstrap.com/components/navbar/.

6. ASP.NET 5 is dead - Introducing ASP.NET Core 1.0 and .NET Core 1.0 [Internet].

2016 [cited 20.04.2017]. Available from:

http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore

10.aspx.

7. Introduction to ASP.NET Core [Internet]. 2016 [cited 12.04.2017]. Available from:

https://docs.microsoft.com/en-us/aspnet/core/.

8. ASP.NET Core Middleware Fundamentals [Internet]. 2017 [cited 18.04.2017].

Available from: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware.

9. Application Startup in ASP.NET Core [Internet]. 2017 [cited 20.04.2017]. Available

from: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/startup.

10. Overview of ASP.NET Core MVC [Internet]. 2016 [cited 22.04.2017]. Available

from: https://docs.microsoft.com/en-us/aspnet/core/mvc/overview.

11. Razor syntax [Internet]. 2017 [cited 30.04.2017]. Available from:

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor.

12. Introduction to Tag Helpers in ASP.NET Core [Internet]. 2016 [cited 28.04.2017].

Available from: https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/intro

13. Host an ASP.NET Core app in a Windows Service [Internet]. 2017 [cited

01.05.2017]. Available from: https://docs.microsoft.com/en-us/aspnet/core/publishing/.

14. Store users and pass in single table or separate table [Internet]2012. Available from:

http://stackoverflow.com/questions/13322841/store-users-and-pass-in-single-table-or-

separate-table.

15. Salted Password Hashing - Doing it Right [Internet]. 2016 [cited 1.05.2017].

Available from: https://crackstation.net/hashing-security.htm.

16. User Roles (WordPress) [Internet]. [cited 22.04.2017]. Available from:

[https://en.support.wordpress.com/user-roles/.

17. SQL Server Data Type Mappings [Internet]. [cited 02.05.2017]. Available from:

https://msdn.microsoft.com/en-us/library/cc716729(v=vs.110).aspx.

18. Chen R. GUIDs are globally unique, but substrings of GUIDs aren’t [Internet]2008.

Available from: https://blogs.msdn.microsoft.com/oldnewthing/20080627-00/?p=21823/.

https://en.wikipedia.org/wiki/List_of_CLI_languages
https://en.wikipedia.org/wiki/FURPS
https://www.w3schools.com/html/html_intro.asp
https://v4-alpha.getbootstrap.com/getting-started/introduction/
https://v4-alpha.getbootstrap.com/getting-started/introduction/
https://v4-alpha.getbootstrap.com/components/navbar/
https://v4-alpha.getbootstrap.com/components/navbar/
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/startup
https://docs.microsoft.com/en-us/aspnet/core/mvc/overview
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/intro
https://docs.microsoft.com/en-us/aspnet/core/publishing/
http://stackoverflow.com/questions/13322841/store-users-and-pass-in-single-table-or-separate-table
http://stackoverflow.com/questions/13322841/store-users-and-pass-in-single-table-or-separate-table
https://crackstation.net/hashing-security.htm
https://en.support.wordpress.com/user-roles/
https://msdn.microsoft.com/en-us/library/cc716729(v=vs.110).aspx
https://blogs.msdn.microsoft.com/oldnewthing/20080627-00/?p=21823/

 References

42

19. Guid.ToString Method (String) [Internet]. [cited 18.04.2017]. Available from:

https://msdn.microsoft.com/en-us/library/97af8hh4(v=vs.110).aspx.

20. Alexander Zhang Gjerseth, Ang L. Development of a Database System for

Environmental and Public Health Information. 2016.

21. .NET Core command-line interface (CLI) tools [Internet]. 2017 [cited 07.05.2017].

Available from: https://docs.microsoft.com/en-us/dotnet/articles/core/tools/.

22. ASP.NET Core - Existing Database [Internet]. 2016 [cited 08.05.2017]. Available

from: https://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/existing-db.

23. Building Your First Web API with ASP.NET Core MVC and Visual Studio [Internet].

2017 [cited 04.05.2017]. Available from: https://docs.microsoft.com/en-

us/aspnet/core/tutorials/first-web-api.

24. Introduction to formatting response data in ASP.NET Core MVC [Internet]. 2016

[cited 5.04.2017]. Available from: https://docs.microsoft.com/en-

us/aspnet/core/mvc/models/formatting.

25. Introduction to working with static files in ASP.NET Core [Internet]. 2017 [cited

13.04.2017]. Available from: https://docs.microsoft.com/en-

us/aspnet/core/fundamentals/static-files.

26. Introduction to Identity [Internet]. 2016 [cited 16.04.2017]. Available from:

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity.

27. Globalization and localization [Internet]. 2017 [cited 02.05.2017]. Available from:

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/localization.

28. Getting Started with ASP.NET Core and Bootstrap 4 [Internet]. 2016 [cited

21.04.2017]. Available from: https://www.packtpub.com/books/content/getting-started-

aspnet-core-and-bootstrap-4.

29. Brackets (text editor) [Internet]. 2017 [cited 28.04.2017]. Available from:

https://en.wikipedia.org/wiki/Brackets_(text_editor).

https://msdn.microsoft.com/en-us/library/97af8hh4(v=vs.110).aspx
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/
https://docs.microsoft.com/en-us/ef/core/get-started/aspnetcore/existing-db
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/formatting
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/formatting
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/static-files
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/static-files
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/localization
https://www.packtpub.com/books/content/getting-started-aspnet-core-and-bootstrap-4
https://www.packtpub.com/books/content/getting-started-aspnet-core-and-bootstrap-4
https://en.wikipedia.org/wiki/Brackets_(text_editor

 References

43

Appendix A

 References

44

 References

45

Appendix B
DROP TABLE MEASUREMENT

go

DROP TABLE EMISSIONSOURCE

go

DROP TABLE MEASUREMENTSTATION

go

DROP TABLE CITY

go

DROP TABLE AREA

go

DROP TABLE COUNTRY

go

DROP TABLE HEALTHEFFECT

go

DROP TABLE HEALTHEFFECTGROUP

go

DROP TABLE PROPERTY

go

DROP TABLE MEASUREMENTTYPE

go

DROP TABLE MEASUREMENTUNIT

go

DROP TABLE MEASUREMENTUNITGROUP

go

DROP TABLE MEASUREMENTGROUP

go

CREATE TABLE MEASUREMENTGROUP

(

 MeasurementGroupId int NOT NULL IDENTITY (1,1) ,

 MeasurementGroupName varchar(30) NOT NULL ,

 MeasurementGroupDescription varchar(200) NULL ,

 PRIMARY KEY CLUSTERED (MeasurementGroupId ASC)

)

go

CREATE TABLE MEASUREMENTUNITGROUP

(

 MeasurementUnitGroupId int NOT NULL IDENTITY (1,1) ,

 MeasurementUnitGroupName varchar(30) NOT NULL ,

 MeasurementUnitGroupDescription varchar(200) NULL ,

 PRIMARY KEY CLUSTERED (MeasurementUnitGroupId ASC)

)

go

CREATE TABLE MEASUREMENTUNIT

(

 MeasurementUnitId int NOT NULL IDENTITY (1,1) ,

 MeasurementUnitProperty varchar(30) NOT NULL ,

 MeasurementUnitScaling float NOT NULL ,

 MeasurementUnitDescription varchar(200) NULL ,

 MeasurementUnitGroupId int NOT NULL ,

 PRIMARY KEY CLUSTERED (MeasurementUnitId ASC),

 FOREIGN KEY (MeasurementUnitGroupId) REFERENCES

MEASUREMENTUNITGROUP(MeasurementUnitGroupId)

 ON DELETE CASCADE

 ON UPDATE CASCADE

)

go

CREATE TABLE MEASUREMENTTYPE

(

 MeasurementTypeId int NOT NULL IDENTITY (1,1) ,

 MeasurementTypeName varchar(30) NOT NULL ,

 MeasurementTypeDescription varchar(200) NULL ,

 MeasurementTypeAcronym varchar(10) NOT NULL ,

 MeasurementGroupId int NOT NULL ,

 MeasurementUnitId int NOT NULL ,

 MeasurementTypeCreated DateTime NOT NULL ,

 PRIMARY KEY CLUSTERED (MeasurementTypeId ASC),

 FOREIGN KEY (MeasurementGroupId) REFERENCES MEASUREMENTGROUP(MeasurementGroupId)

 ON DELETE CASCADE

 ON UPDATE CASCADE,

 FOREIGN KEY (MeasurementUnitId) REFERENCES MEASUREMENTUNIT(MeasurementUnitId)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

)

 References

46

go

CREATE TABLE PROPERTY

(

 PropertyId int NOT NULL IDENTITY (1,1) ,

 PropertyLL float NULL ,

 PropertyL float NULL ,

 PropertyCreated DateTime NOT NULL ,

 MeasurementTypeId int NOT NULL ,

 PropertyH float NULL ,

 PropertyHH float NULL ,

 PropertyLastModified DateTime NOT NULL ,

 PRIMARY KEY CLUSTERED (PropertyId ASC,MeasurementTypeId ASC),

 FOREIGN KEY (MeasurementTypeId) REFERENCES MEASUREMENTTYPE(MeasurementTypeId)

 ON DELETE CASCADE

 ON UPDATE CASCADE

)

go

CREATE TABLE HEALTHEFFECTGROUP

(

 HealthEffectGroupId int NOT NULL IDENTITY ,

 Name varchar(30) NULL ,

 Description varchar(200) NULL ,

 PRIMARY KEY CLUSTERED (HealthEffectGroupId ASC)

)

go

CREATE TABLE HEALTHEFFECT

(

 HealthEffectId int NOT NULL ,

 Type varchar(30) NULL ,

 Description varchar(200) NULL ,

 HealthEffectGroupId int NOT NULL IDENTITY ,

 PRIMARY KEY CLUSTERED (HealthEffectId ASC),

 FOREIGN KEY (HealthEffectGroupId) REFERENCES HEALTHEFFECTGROUP(HealthEffectGroupId)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

)

go

CREATE TABLE COUNTRY

(

 CountryId int NOT NULL IDENTITY (1,1) ,

 CountryName varchar(30) NOT NULL ,

 PRIMARY KEY CLUSTERED (CountryId ASC)

)

go

CREATE TABLE AREA

(

 AreaId int NOT NULL IDENTITY (1,1) ,

 AreaName varchar(30) NOT NULL ,

 CountryId int NOT NULL ,

 PRIMARY KEY CLUSTERED (AreaId ASC,CountryId ASC),

 FOREIGN KEY (CountryId) REFERENCES COUNTRY(CountryId)

 ON DELETE CASCADE

 ON UPDATE CASCADE

)

go

CREATE TABLE CITY

(

 CityId int NOT NULL IDENTITY (1,1) ,

 CityName varchar(30) NOT NULL ,

 AreaId int NOT NULL ,

 CountryId int NOT NULL ,

 PRIMARY KEY CLUSTERED (CityId ASC,AreaId ASC,CountryId ASC),

 FOREIGN KEY (AreaId,CountryId) REFERENCES AREA(AreaId,CountryId)

 ON DELETE CASCADE

 ON UPDATE CASCADE

)

go

CREATE TABLE MEASUREMENTSTATION

(

 MeasurementStationId int NOT NULL IDENTITY (1,1) ,

 MeasurementStationName varchar(30) NOT NULL ,

 MeasurementStationLongitude float NOT NULL ,

 MeasurementStationLatitude float NOT NULL ,

 CityId int NOT NULL ,

 AreaId int NOT NULL ,

 CountryId int NOT NULL ,

 PRIMARY KEY CLUSTERED (MeasurementStationId ASC),

 References

47

 FOREIGN KEY (CityId,AreaId,CountryId) REFERENCES CITY(CityId,AreaId,CountryId)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

)

go

CREATE TABLE EMISSIONSOURCE

(

 EmissionSourceId int NOT NULL IDENTITY (1,1) ,

 EmissionSourceName varchar(30) NOT NULL ,

 EmissionSourceDescription varchar(200) NULL ,

 CityId int NOT NULL ,

 AreaId int NOT NULL ,

 CountryId int NOT NULL ,

 PRIMARY KEY CLUSTERED (EmissionSourceId ASC),

 FOREIGN KEY (CityId,AreaId,CountryId) REFERENCES CITY(CityId,AreaId,CountryId)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

)

go

CREATE TABLE MEASUREMENT

(

 MeasurementId nvarchar(36) NOT NULL ,

 MeasurementValue float NOT NULL ,

 MeasurementTimestamp DateTime NOT NULL ,

 MeasurementStationId int NOT NULL ,

 MeasurementTypeId int NOT NULL ,

 EmissionSourceId int NOT NULL ,

 MeasurementAdded DateTime NOT NULL ,

 PRIMARY KEY CLUSTERED (MeasurementId ASC),

 FOREIGN KEY (MeasurementStationId) REFERENCES

MEASUREMENTSTATION(MeasurementStationId)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION,

 FOREIGN KEY (MeasurementTypeId) REFERENCES MEASUREMENTTYPE(MeasurementTypeId)

 ON DELETE CASCADE

 ON UPDATE CASCADE,

 FOREIGN KEY (EmissionSourceId) REFERENCES EMISSIONSOURCE(EmissionSourceId)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

)

Go

 References

48

Appendix C
User Role Seed:

using Microsoft.AspNetCore.Identity;

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

using System.Threading.Tasks;

namespace EPHMS.Configuration

{

 public class UserRoleSeed

 {

 private readonly RoleManager<IdentityRole> _roleManager;

 public UserRoleSeed(RoleManager<IdentityRole> roleManager)

 {

 _roleManager = roleManager;

 }

 public async void Seed()

 {

 await AddUserRoleAsync("User");

 await AddUserRoleAsync("Admin");

 await AddUserRoleAsync("Publisher");

 }

 public async Task AddUserRoleAsync(string userRole)

 {

 if (await _roleManager.FindByNameAsync(userRole) == null)

 {

 await _roleManager.CreateAsync(new IdentityRole { Name = userRole });

 }

 }

 }

}

User seed:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Identity;

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

using EPHMS.Models;

namespace EPHMS.Configuration

{

 public class UserSeed

 {

 private readonly UserManager<ApplicationUser> _userManager;

 public UserSeed(UserManager<ApplicationUser> userManager)

 {

 _userManager = userManager;

 }

 public async void Seed()

 {

 await AddUserAsync("a@ephms.no", "P@ssword1", "User");

 await AddUserAsync("b@ephms.no", "P@ssword1", "Admin");

 await AddUserAsync("c@ephms.no", "P@ssword1", "Admin");

 }

 public async Task AddUserAsync(string email, string pass, string role)

 {

 var newUser = new ApplicationUser { Email = email, UserName = email };

 if (await _userManager.FindByEmailAsync(email) == null)

 {

 var result = await _userManager.CreateAsync(newUser, pass);

 if (result.Succeeded)

 result = await _userManager.AddToRoleAsync(newUser, role);

 }

 }

 }

}

 References

49

Appendix D
USE EPHMS-db --EMISSIONSOURCE AND ANNUALDATA DOESNT GENERATE IDENTITY.

GO

--DELETING PREVIOUS INFORMATION

DELETE FROM EMISSIONSOURCE

GO

DBCC CHECKIDENT ('EMISSIONSOURCE',RESEED, 0)

GO

DELETE FROM MeasurementSTATION

GO

DBCC CHECKIDENT ('MeasurementSTATION',RESEED, 0)

GO

DELETE FROM CITY

GO

DBCC CHECKIDENT ('CITY', RESEED, 0)

GO

DELETE FROM AREA

GO

DBCC CHECKIDENT ('AREA',RESEED, 0)

GO

DELETE FROM COUNTRY

GO

DBCC CHECKIDENT ('COUNTRY',RESEED, 0)

GO

DELETE FROM MEASUREMENTTYPE

GO

DBCC CHECKIDENT ('MEASUREMENTTYPE',RESEED, 0)

GO

DELETE FROM MeasurementGROUP

GO

DBCC CHECKIDENT ('MeasurementGROUP',RESEED, 0)

GO

DELETE FROM MEASUREMENTUNIT

GO

DBCC CHECKIDENT ('MEASUREMENTUNIT',RESEED, 0)

GO

DELETE FROM MEASUREMENTUNITGROUP

GO

DBCC CHECKIDENT ('MEASUREMENTUNITGROUP', RESEED, 0)

GO

DBCC CHECKIDENT ('PROPERTY', RESEED, 0)

GO

--COUNTRY TABLE INFO

INSERT INTO COUNTRY(CountryName) VALUES ('Norway')

--AREA TABLE INFO

INSERT INTO AREA(AreaName,CountryId) VALUES('Grenland',1)

--CITY TABLE INFO

INSERT INTO CITY(CityName,AreaId,CountryId) VALUES ('Porsgrunn',1,1)

INSERT INTO CITY(CityName,AreaId,CountryId) VALUES ('Skien',1,1)

--MEASUREMENTSTATION TABLE INFO

INSERT INTO

MEASUREMENTSTATION(MeasurementStationName,MeasurementStationLongitude,MeasurementStationLatitu

de,CityId,AreaId,CountryId) VALUES ('Sverresgate Målestasjon',9.652195,59.138162,1,1,1)

INSERT INTO

MEASUREMENTSTATION(MeasurementStationName,MeasurementStationLongitude,MeasurementStationLatitu

de,CityId,AreaId,CountryId) VALUES ('Øyekast Målestasjon',9.642207,59.129194,1,1,1)

INSERT INTO

MEASUREMENTSTATION(MeasurementStationName,MeasurementStationLongitude,MeasurementStationLatitu

de,CityId,AreaId,CountryId) VALUES ('Lensmannsdalen Målestasjon',9.635742,59.159296,2,1,1)

INSERT INTO

MEASUREMENTSTATION(MeasurementStationName,MeasurementStationLongitude,MeasurementStationLatitu

de,CityId,AreaId,CountryId) VALUES ('Haukenes Målestasjon',9.48708966,59.20243518,2,1,1)

INSERT INTO

MEASUREMENTSTATION(MeasurementStationName,MeasurementStationLongitude,MeasurementStationLatitu

de,CityId,AreaId,CountryId) VALUES ('Furulund Målestasjon',9.69563115,59.05730396,1,1,1)

--MEASUREMENTGROUP TABLE INFO

INSERT INTO MEASUREMENTGROUP(MeasurementGroupName,MeasurementGroupDescription) VALUES ('Air

Quality','Contains types of data related to Air Quality.')

INSERT INTO MEASUREMENTGROUP(MeasurementGroupName,MeasurementGroupDescription) VALUES ('Global

Pollution','Global pollutant problem.')

INSERT INTO MEASUREMENTGROUP(MeasurementGroupName,MeasurementGroupDescription) VALUES ('Old

Pollution','The pollutants that was used long time ago.')

--MEASUREMENTUNITGROUP TABLE INFO

 References

50

INSERT INTO MEASUREMENTUNITGROUP(MeasurementUnitGroupName,MeasurementUnitGroupDescription)

VALUES ('Density','Mass divided by volume')

INSERT INTO MEASUREMENTUNITGROUP(MeasurementUnitGroupName,MeasurementUnitGroupDescription)

VALUES ('Mass','Mass of substance')

--MEASUREMENTUNIT TABLE INFO

INSERT INTO

MEASUREMENTUNIT(MeasurementUnitProperty,MeasurementUnitDescription,MeasurementUnitScaling,Meas

urementUnitGroupId) VALUES ('ug/m^3','Micro gram per cubic meter',1,1)

--MEASUREMENTTYPE TABLE INFO

INSERT INTO

MEASUREMENTTYPE(MeasurementTypeName,MeasurementTypeDescription,MeasurementTypeAcronym,Measurem

entGroupId,MeasurementUnitId,MeasurementTypeCreated) VALUES ('Nitrogen dioxide','An

intermediate in the industrial synthesis of nitric acid, millions of tons of which are

produced each year.','NO2',1,1, GETDATE())

INSERT INTO

MEASUREMENTTYPE(MeasurementTypeName,MeasurementTypeDescription,MeasurementTypeAcronym,Measurem

entGroupId,MeasurementUnitId,MeasurementTypeCreated) VALUES ('NOx','Combination of NO and NO2

that is formed in a high temperature.','NOx',1,1,GETDATE())

INSERT INTO

MEASUREMENTTYPE(MeasurementTypeName,MeasurementTypeDescription,MeasurementTypeAcronym,Measurem

entGroupId,MeasurementUnitId,MeasurementTypeCreated) VALUES ('Sulfur Dioxide','Formed by

combustion by sulphurous materials mainly oil and coal.','SO2',1,1,GETDATE())

INSERT INTO

MEASUREMENTTYPE(MeasurementTypeName,MeasurementTypeDescription,MeasurementTypeAcronym,Measurem

entGroupId,MeasurementUnitId,MeasurementTypeCreated) VALUES ('Particulate Matter 10','Dust

particles smaller than 10µm.','PM10',1,1,GETDATE())

INSERT INTO

MEASUREMENTTYPE(MeasurementTypeName,MeasurementTypeDescription,MeasurementTypeAcronym,Measurem

entGroupId,MeasurementUnitId,MeasurementTypeCreated) VALUES ('Particulate Matter 2.5','Dust

particles smaller than 2.5µm.','PM2.5',1,1,GETDATE())

INSERT INTO

MEASUREMENTTYPE(MeasurementTypeName,MeasurementTypeDescription,MeasurementTypeAcronym,Measurem

entGroupId,MeasurementUnitId,MeasurementTypeCreated) VALUES ('Ozone','A reactive gas that

exist both near the ground and in the stratosphere.','O3',1,1,GETDATE())

--INSERT INTO

MEASUREMENTTYPE(MeasurementTypeName,MeasurementTypeDescription,MeasurementTypeAcronym,Measurem

entGroupId,MeasurementUnitId,MeasurementTypeCreated) VALUES ('Carbon Dioxide','The most

important pollutant into global warming. This gas is a man-made','CO2',2,2,GETDATE())

--INSERT INTO

MEASUREMENTTYPE(MeasurementTypeName,MeasurementTypeDescription,MeasurementTypeAcronym,Measurem

entGroupId,MeasurementUnitId,MeasurementTypeCreated) VALUES ('Nitrous Oxide','The third

important natural climate pollutant in Norway.','N2O',2,2,GETDATE())

--INSERT INTO

MEASUREMENTTYPE(MeasurementTypeName,MeasurementTypeDescription,MeasurementTypeAcronym,Measurem

entGroupId,MeasurementUnitId,MeasurementTypeCreated) VALUES ('Sulfur Hexafluoride','A man-made

chemical, non- reactive, colorless, non-flammable and one of the heaviest of all

pollutants.','SF6',2,2,GETDATE())

--INSERT INTO

MEASUREMENTTYPE(MeasurementTypeName,MeasurementTypeDescription,MeasurementTypeAcronym,Measurem

entGroupId,MeasurementUnitId,MeasurementTypeCreated) VALUES ('Dioxins in the fjord','Complex

chemical element that contains chlorine and heavy organic chemicals.','',3,3,GETDATE())

--INSERT INTO

MEASUREMENTTYPE(MeasurementTypeName,MeasurementTypeDescription,MeasurementTypeAcronym,Measurem

entGroupId,MeasurementUnitId,MeasurementTypeCreated) VALUES ('Mercury','The most hazardous

pollutant and constitute a threat for the environment and human health.','Hg',3,3,GETDATE())

--INSERT INTO

MEASUREMENTTYPE(MeasurementTypeName,MeasurementTypeDescription,MeasurementTypeAcronym,Measurem

entGroupId,MeasurementUnitId,MeasurementTypeCreated) VALUES ('Polychlorinated Biphenyl','A

synthetically produced substance with two aromatic rings that can have from 1-10 chlorine

atoms connected to them.','PCB',3,3,GETDATE())

--EMISSIONSOURCE TABLE INFO

INSERT INTO

EMISSIONSOURCE(EmissionSourceName,EmissionSourceDescription,CityId,AreaId,CountryId) VALUES

('Porsgrunn Municipality','Measures the local quality in air',1,1,1)

--PROPERTY TABLE INFO

INSERT INTO

PROPERTY(MeasurementTypeId,PropertyCreated,PropertyLastModified,PropertyLL,PropertyL,PropertyH

,PropertyHH) VALUES (4,GETDATE(),GETDATE(),0,0,50,50)

